Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
New Phytol ; 242(3): 935-946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482720

RESUMEN

Turgor loss point (TLP) is an important proxy for plant drought tolerance, species habitat suitability, and drought-induced plant mortality risk. Thus, TLP serves as a critical tool for evaluating climate change impacts on plants, making it imperative to develop high-throughput and in situ methods to measure TLP. We developed hyperspectral pressure-volume curves (PV curves) to estimate TLP using leaf spectral reflectance. We used partial least square regression models to estimate water potential (Ψ) and relative water content (RWC) for two species, Frangula caroliniana and Magnolia grandiflora. RWC and Ψ's model for each species had R2 ≥ 0.7 and %RMSE = 7-10. We constructed PV curves with model estimates and compared the accuracy of directly measured and spectra-predicted TLP. Our findings indicate that leaf spectral measurements are an alternative method for estimating TLP. F. caroliniana TLP's values were -1.62 ± 0.15 (means ± SD) and -1.62 ± 0.34 MPa for observed and reflectance predicted, respectively (P > 0.05), while M. grandiflora were -1.78 ± 0.34 and -1.66 ± 0.41 MPa (P > 0.05). The estimation of TLP through leaf reflectance-based PV curves opens a broad range of possibilities for future research aimed at understanding and monitoring plant water relations on a large scale with spectral ecophysiology.


Asunto(s)
Hojas de la Planta , Agua , Hojas de la Planta/fisiología , Agua/fisiología , Ecosistema , Sequías
2.
Nat Ecol Evol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467712

RESUMEN

Vegetation greening has been suggested to be a dominant trend over recent decades, but severe pulses of tree mortality in forests after droughts and heatwaves have also been extensively reported. These observations raise the question of to what extent the observed severe pulses of tree mortality induced by climate could affect overall vegetation greenness across spatial grains and temporal extents. To address this issue, here we analyse three satellite-based datasets of detrended growing-season normalized difference vegetation index (NDVIGS) with spatial resolutions ranging from 30 m to 8 km for 1,303 field-documented sites experiencing severe drought- or heat-induced tree-mortality events around the globe. We find that severe tree-mortality events have distinctive but localized imprints on vegetation greenness over annual timescales, which are obscured by broad-scale and long-term greening. Specifically, although anomalies in NDVIGS (ΔNDVI) are negative during tree-mortality years, this reduction diminishes at coarser spatial resolutions (that is, 250 m and 8 km). Notably, tree-mortality-induced reductions in NDVIGS (|ΔNDVI|) at 30-m resolution are negatively related to native plant species richness and forest height, whereas topographic heterogeneity is the major factor affecting ΔNDVI differences across various spatial grain sizes. Over time periods of a decade or longer, greening consistently dominates all spatial resolutions. The findings underscore the fundamental importance of spatio-temporal scales for cohesively understanding the effects of climate change on forest productivity and tree mortality under both gradual and abrupt changes.

4.
Plant Cell Environ ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372066

RESUMEN

Despite the abundant evidence of impairments to plant performance and survival under hotter-drought conditions, little is known about the vulnerability of reproductive organs to climate extremes. Here, by conducting a comparative analysis between flowers and leaves, we investigated how variations in key morphophysiological traits related to carbon and water economics can explain the differential vulnerabilities to heat and drought among these functionally diverse organs. Due to their lower construction costs, despite having a higher water storage capacity, flowers were more prone to turgor loss (higher turgor loss point; ΨTLP ) than leaves, thus evidencing a trade-off between carbon investment and drought tolerance in reproductive organs. Importantly, the higher ΨTLP of flowers also resulted in narrow turgor safety margins (TSM). Moreover, compared to leaves, the cuticle of flowers had an overall higher thermal vulnerability, which also resulted in low leakage safety margins (LSM). As a result, the combination of low TSMs and LSMs may have negative impacts on reproduction success since they strongly influenced the time to turgor loss under simulated hotter-drought conditions. Overall, our results improve the knowledge of unexplored aspects of flower structure and function and highlight likely threats to successful plant reproduction in a warmer and drier world.

5.
Ecol Lett ; 26(11): 1829-1839, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37807917

RESUMEN

Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.


Asunto(s)
Ecosistema , Árboles , Clima Tropical , Bosques , Madera , Sequías , Hojas de la Planta , Xilema
6.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743552

RESUMEN

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Asunto(s)
Embolia , Agua Subterránea , Agua/fisiología , Madera/fisiología , Xilema/fisiología , Plantas , Hojas de la Planta/fisiología , Sequías
7.
Nat Ecol Evol ; 7(10): 1620-1632, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640766

RESUMEN

Predicting drought-induced mortality (DIM) of woody plants remains a key research challenge under climate change. Here, we integrate information on the edaphoclimatic niches, phylogeny and hydraulic traits of species to model the hydraulic risk of woody plants globally. We combine these models with species distribution records to estimate the hydraulic risk faced by local woody plant species assemblages. Thus, we produce global maps of hydraulic risk and test for its relationship with observed DIM. Our results show that local assemblages modelled as having higher hydraulic risk present a higher probability of DIM. Metrics characterizing this hydraulic risk improve DIM predictions globally, relative to models accounting only for edaphoclimatic predictors or broad functional groupings. The methodology we present here allows mapping of functional trait distributions and elucidation of global macro-evolutionary and biogeographical patterns, improving our ability to predict potential global change impacts on vegetation.


Asunto(s)
Sequías , Plantas , Cambio Climático , Fenotipo
8.
PLoS One ; 18(7): e0288067, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405993

RESUMEN

Bark beetle infestations have historically been primary drivers of stand thinning in Mexican pine forests. However, bark beetle impacts have become increasingly extensive and intense, apparently associated with climate change. Our objective was to describe the possible association between abundance of bark beetle flying populations and the occurrence of given value intervals of temperature, precipitation and their balance, in order to have a better comprehension of the climatic space that might trigger larger insect abundances, an issue relevant in the context of the ongoing climatic change. Here, we monitored the abundance of two of the most important bark beetle species in Mexico, Dendroctonus frontalis and D. mexicanus. We sampled 147 sites using pheromone-baited funnel traps along 24 altitudinal transects in 11 Mexican states, from northwestern Chihuahua to southeastern Chiapas, from 2015 to 2017. Through mixed model analysis, we found that the optimum Mean Annual Temperatures were 17°C-20°C for D. frontalis in low-elevation pine-oak forest, while D. mexicanus had two optimal intervals: 11-13°C and 15-18°C. Higher atmospheric Vapor Pressure Deficit (≥ 1.0) was correlated with higher D. frontalis abundances, indicating that warming-amplified drought stress intensifies trees' vulnerability to beetle attack. As temperatures and drought stress increase further with projected future climatic changes, it is likely that these Dendroctonus species will increase tree damage at higher elevations. Pine forests in Mexico are an important source of livelihood for communities inhabiting those areas, so providing tools to tackle obstacles to forest growth and health posed by changing climate is imperative.


Asunto(s)
Escarabajos , Pinus , Gorgojos , Animales , México , Conservación de los Recursos Naturales , Bosques , Árboles
9.
Am Surg ; 89(8): 3605-3608, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36959693

RESUMEN

Bilioenteric fistulae are rare and difficult to manage complications of chronic cholecystitis. While cholecystoduodenal and cholecystocolic fistulae are more common, a cholecystoappendiceal fistula is an extremely rare finding. We report the presentation and operative management of a 59-year-old male with cholecystoappendiceal fistula and associated abscess in the gallbladder fossa. The patient was appropriately resuscitated, the abscess drained by interventional radiology, and after a complete workup, underwent a laparoscopic appendectomy and cholecystectomy. Pathology revealed moderately differentiated appendiceal adenocarcinoma requiring a right hemicolectomy with cytoreduction and hyperthermic intraperitoneal chemotherapy (HIPEC). He has recovered well postoperatively with no complications. This case highlights the importance of having a very high index of suspicion for underlying malignancy when managing a fistula of any kind. To the best of our understanding, this is only the second reported case of a cholecystoappendiceal fistula.


Asunto(s)
Adenocarcinoma , Neoplasias del Apéndice , Fístula , Hipertermia Inducida , Neoplasias Peritoneales , Masculino , Humanos , Persona de Mediana Edad , Quimioterapia Intraperitoneal Hipertérmica , Procedimientos Quirúrgicos de Citorreducción , Absceso/cirugía , Neoplasias Peritoneales/patología , Neoplasias del Apéndice/complicaciones , Neoplasias del Apéndice/terapia , Neoplasias del Apéndice/patología , Adenocarcinoma/terapia , Adenocarcinoma/cirugía , Fístula/cirugía , Colectomía
10.
Glob Chang Biol ; 29(7): 2030-2040, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36655297

RESUMEN

The sequence of physiological events during drought strongly impacts plants' overall performance. Here, we synthesized the global data of stomatal and hydraulic traits in leaves and stems of 202 woody species to evaluate variations in the water potentials for key physiological events and their sequence along the climatic gradient. We found that the seasonal minimum water potential, turgor loss point, stomatal closure point, and leaf and stem xylem vulnerability to embolism were intercorrelated and decreased with aridity, indicating that water stress drives trait co-selection. In xeric regions, the seasonal minimum water potential occurred at lower water potential than turgor loss point, and the subsequent stomatal closure delayed embolism formation. In mesic regions, however, the seasonal minimum water potential did not pose a threat to the physiological functions, and stomatal closure occurred even at slightly more negative water potential than embolism. Our study demonstrates that the sequence of water potentials for physiological dysfunctions of woody plants varies with aridity, that is, xeric species adopt a more conservative sequence to prevent severe tissue damage through tighter stomatal regulation (isohydric strategy) and higher embolism resistance, while mesic species adopt a riskier sequence via looser stomatal regulation (anisohydric strategy) to maximize carbon uptake at the cost of hydraulic safety. Integrating both aridity-dependent sequence of water potentials for physiological dysfunctions and gap between these key traits into the hydraulic framework of process-based vegetation models would improve the prediction of woody plants' responses to drought under global climate change.


Asunto(s)
Hojas de la Planta , Estomas de Plantas , Estomas de Plantas/fisiología , Hojas de la Planta/fisiología , Madera , Xilema , Árboles , Sequías
11.
Plant Cell Environ ; 46(3): 764-779, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36517464

RESUMEN

The increase in frequency and intensity of drought events have hampered coffee production in the already threatened Amazon region, yet little is known about key aspects underlying the variability in yield potential across genotypes, nor to what extent higher productivity is linked to reduced drought tolerance. Here we explored how variations in morphoanatomical and physiological leaf traits can explain differences in yield and vulnerability to embolism in 11 Coffea canephora genotypes cultivated in the Western Amazon. The remarkable variation in coffee yield across genotypes was tightly related to differences in their carbon assimilation and water transport capacities, revealing a diffusive limitation to photosynthesis linked by hydraulic constraints. Although a clear trade-off between water transport efficiency and safety was not detected, all the studied genotypes operated in a narrow and/or negative hydraulic safety margin, suggesting a high vulnerability to leaf hydraulic failure (HF), especially on the most productive genotypes. Modelling exercises revealed that variations in HF across genotypes were mainly associated with differences in leaf water vapour leakage when stomata are closed, reflecting contrasting growth strategies. Overall, our results provide a new perspective on the challenges of sustaining coffee production in the Amazon region under a drier and warmer climate.


Asunto(s)
Coffea , Coffea/genética , Café , Hojas de la Planta/fisiología , Fenotipo , Fotosíntesis/fisiología , Sequías
13.
Ecol Lett ; 25(12): 2637-2650, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257904

RESUMEN

Considering the global intensification of aridity in tropical biomes due to climate change, we need to understand what shapes the distribution of drought sensitivity in tropical plants. We conducted a pantropical data synthesis representing 1117 species to test whether xylem-specific hydraulic conductivity (KS ), water potential at leaf turgor loss (ΨTLP ) and water potential at 50% loss of KS (ΨP50 ) varied along climate gradients. The ΨTLP and ΨP50 increased with climatic moisture only for evergreen species, but KS did not. Species with high ΨTLP and ΨP50 values were associated with both dry and wet environments. However, drought-deciduous species showed high ΨTLP and ΨP50 values regardless of water availability, whereas evergreen species only in wet environments. All three traits showed a weak phylogenetic signal and a short half-life. These results suggest strong environmental controls on trait variance, which in turn is modulated by leaf habit along climatic moisture gradients in the tropics.


Asunto(s)
Sequías , Hojas de la Planta , Clima Tropical , Filogenia , Hojas de la Planta/fisiología , Xilema
14.
Stem Cell Reports ; 17(8): 1874-1888, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35803261

RESUMEN

Fibrolamellar carcinoma (FLC) is a rare, often lethal, liver cancer affecting adolescents and young adults, for which there are no approved therapeutics. The development of therapeutics is hampered by a lack of in vitro models. Organoids have shown utility as a model system for studying many diseases. In this study, tumor tissue and the adjacent non-tumor liver were obtained at the time of surgery. The tissue was dissociated and grown as organoids. We developed 21 patient-derived organoid lines: 12 from metastases, three from the liver tumor and six from adjacent non-tumor liver. These patient-derived FLC organoids recapitulate the histologic morphology, immunohistochemistry, and transcriptome of the patient tumor. Patient-derived FLC organoids were used in a preliminary high-throughput drug screen to show proof of concept for the identification of therapeutics. This model system has the potential to improve our understanding of this rare cancer and holds significant promise for drug testing and development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adolescente , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , Organoides/patología
15.
Nat Commun ; 13(1): 1761, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383157

RESUMEN

Earth's forests face grave challenges in the Anthropocene, including hotter droughts increasingly associated with widespread forest die-off events. But despite the vital importance of forests to global ecosystem services, their fates in a warming world remain highly uncertain. Lacking is quantitative determination of commonality in climate anomalies associated with pulses of tree mortality-from published, field-documented mortality events-required for understanding the role of extreme climate events in overall global tree die-off patterns. Here we established a geo-referenced global database documenting climate-induced mortality events spanning all tree-supporting biomes and continents, from 154 peer-reviewed studies since 1970. Our analysis quantifies a global "hotter-drought fingerprint" from these tree-mortality sites-effectively a hotter and drier climate signal for tree mortality-across 675 locations encompassing 1,303 plots. Frequency of these observed mortality-year climate conditions strongly increases nonlinearly under projected warming. Our database also provides initial footing for further community-developed, quantitative, ground-based monitoring of global tree mortality.


Asunto(s)
Sequías , Árboles , Cambio Climático , Ecosistema , Bosques
16.
IEEE J Biomed Health Inform ; 26(8): 4228-4237, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35353709

RESUMEN

Cardiopulmonary Exer cise Testing (CPET) is a unique physiologic medical test used to evaluate human response to progressive maximal exercise stress. Depending on the degree and type of deviation from the normal physiologic response, CPET can help identify a patient's specific limitations to exercise to guide clinical care without the need for other expensive and invasive diagnostic tests. However, given the amount and complexity of data obtained from CPET, interpretation and visualization of test results is challenging. CPET data currently require dedicated training and significant experience for proper clinician interpretation. To make CPET more accessible to clinicians, we investigated a simplified data interpretation and visualization tool using machine learning algorithms. The visualization shows three types of limitations (cardiac, pulmonary and others); values are defined based on the results of three independent random forest classifiers. To display the models' scores and make them interpretable to the clinicians, an interactive dashboard with the scores and interpretability plots was developed. This machine learning platform has the potential to augment existing diagnostic procedures and provide a tool to make CPET more accessible to clinicians.


Asunto(s)
Prueba de Esfuerzo , Ejercicio Físico , Prueba de Esfuerzo/métodos , Corazón , Humanos , Aprendizaje Automático , Consumo de Oxígeno
17.
Annu Rev Plant Biol ; 73: 673-702, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35231182

RESUMEN

Recent observations of elevated tree mortality following climate extremes, like heat and drought, raise concerns about climate change risks to global forest health. We currently lack both sufficient data and understanding to identify whether these observations represent a global trend toward increasing tree mortality. Here, we document events of sudden and unexpected elevated tree mortality following heat and drought events in ecosystems that previously were considered tolerant or not at risk of exposure. These events underscore the fact that climate change may affect forests with unexpected force in the future. We use the events as examples to highlight current difficulties and challenges for realistically predicting such tree mortality events and the uncertainties about future forest condition. Advances in remote sensing technology and greater availably of high-resolution data, from both field assessments and satellites, are needed to improve both understanding and prediction of forest responses to future climate change.


Asunto(s)
Cambio Climático , Árboles , Sequías , Ecosistema , Bosques , Árboles/fisiología
18.
Cancer Discov ; 11(10): 2544-2563, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34127480

RESUMEN

To repurpose therapeutics for fibrolamellar carcinoma (FLC), we developed and validated patient-derived xenografts (PDX) from surgical resections. Most agents used clinically and inhibitors of oncogenes overexpressed in FLC showed little efficacy on PDX. A high-throughput functional drug screen found primary and metastatic FLC were vulnerable to clinically available inhibitors of TOPO1 and HDAC and to napabucasin. Napabucasin's efficacy was mediated through reactive oxygen species and inhibition of translation initiation, and specific inhibition of eIF4A was effective. The sensitivity of each PDX line inversely correlated with expression of the antiapoptotic protein Bcl-xL, and inhibition of Bcl-xL synergized with other drugs. Screening directly on cells dissociated from patient resections validated these results. This demonstrates that a direct functional screen on patient tumors provides therapeutically informative data within a clinically useful time frame. Identifying these novel therapeutic targets and combination therapies is an urgent need, as effective therapeutics for FLC are currently unavailable. SIGNIFICANCE: Therapeutics informed by genomics have not yielded effective therapies for FLC. A functional screen identified TOPO1, HDAC inhibitors, and napabucasin as efficacious and synergistic with inhibition of Bcl-xL. Validation on cells dissociated directly from patient tumors demonstrates the ability for functional precision medicine in a solid tumor.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Compuestos de Anilina/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Benzofuranos/uso terapéutico , Carcinoma Hepatocelular/genética , Femenino , Humanos , Neoplasias Hepáticas/genética , Masculino , Ratones , Naftoquinonas/uso terapéutico , Sulfonamidas/uso terapéutico
19.
Plant Cell Environ ; 44(5): 1311-1314, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33600002

RESUMEN

This article comments on: Seeking the "point of no return" in the sequence of events leading to mortality of mature trees.


Asunto(s)
Transpiración de Plantas , Árboles
20.
Ann Surg ; 274(2): e167-e173, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31356260

RESUMEN

OBJECTIVE: We reviewed our experience with pediatric chest wall tumors (CWTs) to identify variables associated with survival, scoliosis development, and need for corrective scoliosis surgery. BACKGROUND: Chest wall neoplasms in children or adolescents are rare. Consequently, there are few large series that detail survival or quality of life indicators, like scoliosis. METHODS: Medical records were reviewed for all chest wall resections for primary and metastatic CWT performed from October 1, 1986 to September 30, 2016 on patients 21 years or younger at diagnosis. Kaplan-Meier distributions were compared using the log-rank test. Variables correlated with survival, scoliosis development, or need for corrective surgeries were analyzed using competing-risk analysis. RESULTS: Seventy-six cases [57 (75%) primary, 19 (25%) metastatic] were identified. Median age at diagnosis was 15.6 years (range: 0.5-21 years). Tumor types were Ewing sarcoma family tumors (54%), other soft tissue sarcomas (21%), osteosarcoma (11%), rhabdomyosarcoma (7%), and other (8%). A median of 3 (range: 1-5) contiguous ribs were resected. Surgical reconstruction included composite Marlex mesh and methyl-methacrylate, Gore-Tex, or primary closure in 57%, 28%, and 14% of procedures, respectively. Overall 5-year survival was 61% (95% confidence interval: 50%-75%). Scoliosis developed in 19 (25%) patients; 6 patients required corrective surgery. Variables associated with overall survival were the presence of metastatic disease at diagnosis, and whether the chest tumor itself was a primary or metastatic lesion. Younger age at chest wall resection was associated with the need for corrective surgery in patients who developed scoliosis. CONCLUSIONS: Among pediatric and adolescent patients with CWTs, survival depends primarily on the presence of metastases. Age, type of chest wall reconstruction, and tumor size are not associated with scoliosis development. Among patients who develop scoliosis, younger patients are more likely to require corrective surgery.


Asunto(s)
Escoliosis/etiología , Neoplasias Torácicas/mortalidad , Neoplasias Torácicas/cirugía , Pared Torácica/cirugía , Adolescente , Biopsia , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Estudios Retrospectivos , Tasa de Supervivencia , Neoplasias Torácicas/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...